Group Examines Electric Vehicle Battery Recycling and Reuse Opportunities in Michigan

An electric vehicle plugged in to charge

A collaborative effort in Michigan is considering recycling and repurposing capacity and opportunities in the state of Michigan, as reported by Chioma Lewis for Great Lakes Echo:

A new project by recycling company Battery Solutions and sustainability-focused group NextEnergy aims to make electric vehicle recycling opportunity recommendations to the Michigan Department of Environment, Great Lakes and Energy by February 2022.

The project is funded by a $50,000 grant from the state Department of Environment, Great Lakes and Energy as part of their NextCycle Michigan initiative.

A major part of the project is to build capacity in the state for repurposing and recycling electric vehicle batteries, said Jim Saber, the president and CEO of NextEnergy.

The six-stage project will involve cataloging, evaluating and analyzing Michigan’s electric vehicle battery supply chain and infrastructure.

The project will also analyze gaps in electric vehicle battery secondary use and recycling opportunities.

Electric vehicle battery components could be reclaimed for use in the creation of new batteries or other products, while intact batteries might be repurposed for renewable power or other energy storage applications.

Read the full story in Great Lakes Echo.

Learn More

Researchers Develop Lithium-ion Battery That Can Be Directly Charged in Sunlight

A new hybrid device comprised of a lithium-ion battery that can be charged directly in sunlight–no solar cells required–could make the provision of affordable energy easier in some parts of the world, and be useful in off-grid applications. Prachi Patel reports in the April 23, 2021 edition of Chemical & Engineering News:

“The idea is to simplify how solar energy is harvested and stored,” says Michael De Volder, a mechanical engineer at the University of Cambridge who led the work. If the team can improve the efficiency and lifetime of the hybrid device, its cost will likely be lower than combining solar cells and batteries. “For the price of a battery, you get both functionalities,” he says.

This low cost could make it suitable for off-grid uses and for regions of the world that lack access to affordable energy.

The workhorse of the new light-rechargeable battery is a cathode made of vanadium pentoxide nanofibers. The material stores lithium ions and also harvests light to generate paired electrons and positive charges, or holes. The researchers mixed the nanofibers with poly(3-hexylthiophene-2,5-diyl) (P3HT) that blocks the movement of holes, and graphene oxide that aids electron transport.”

A glass window on the cathode side of a coin cell allows light to reach the nanofibers. This new device is more efficient than previously developed light-rechargeable batteries and can be recharged for over 200 cycles. Though the efficiency of this battery is still too low for practical use, researchers hope to explore alternatives to vanadium pentoxide to improve efficiency.

Learn More

Innovative Insole Uses Sweat Evaporation to Generate Power

As reported on Phys.org, researchers from the National University of Singapore have created a 3D printed prototype of a shoe insole that evaporates sweat faster than normal and uses the harvested moisture to generate energy:

“In our new invention, we created a novel film that is extremely effective in evaporating sweat from our skin and then absorbing the moisture from sweat. We also take this one step further—by converting the moisture from sweat into energy that could be used to power small wearable devices,” explained research team leader Assistant Professor Tan Swee Ching, who is from the NUS Department of Material Science and Engineering.

The main components of the novel thin film are two hygroscopic chemicals—cobalt chloride and ethanolamine. Besides being extremely moisture-absorbent, this film can rapidly release water when exposed to sunlight, and it can be ‘regenerated’ and reused for more than 100 times.

To make full use of the absorbed sweat, the NUS team has also designed a wearable energy harvesting device comprising eight electrochemical cells (ECs), using the novel film as the electrolyte. Each EC can generate about 0.57 volts of electricity upon absorbing moisture. The overall energy harvested by the device is sufficient to power a light-emitting diode. This proof-of-concept demonstration illustrates the potential of battery-less wearables powered using human sweat.”

This prototype is certainly interesting and has obvious potential for improving human comfort, confidence, and possibly health. It remains to be seen whether commercialization of the technology will be feasible and whether researchers develop effective ways to recycle the product at the end of its useful life. Conventional electronics are already a waste generation challenge, and wearable technology is notoriously difficult to recycle and a potential contaminant in recycling streams. Further, the incorporation of cobalt chloride in this product could prove problematic and detrimental to sustainable design, as continues to be the case for most electronics. Cobalt mining operations have been supported by child labor, so truly sustainable designs will strive to use reclaimed cobalt from the recycling of existing products for the preparation of cobalt compounds for the manufacture of new devices. It could be the case that innovations such as this one might reduce reliance on batteries, and thus reduce overall demand for cobalt, but any cobalt in a product supply chain must be scrutinized. We can only hope that the same innovativeness that leads to prototypes such as this insole can inspire researchers to continuously improve the overall sustainability of product design and end-of-life management.

Learn more:

Xueping Zhang et al, Super-hygroscopic film for wearables with dual functions of expediting sweat evaporation and energy harvesting, Nano Energy (2020). DOI: 10.1016/j.nanoen.2020.104873

Apple and Google named in US lawsuit over Congolese child cobalt mining deaths

Cavusoglu, AH., Chen, X., Gentine, P. et al. Potential for natural evaporation as a reliable renewable energy resource. Nat Commun 8, 617 (2017). https://doi.org/10.1038/s41467-017-00581-w

 

Fruit Peels Prove Useful for Recycling Lithium-Ion Batteries

Food waste and electronic waste are two aspects of the waste stream that present a multitude of challenges for human society. Now a team of scientists led by the Nanyang Technological University (NTU), Singapore has developed a way to use food waste–specifically orange peels–to recover precious metals from spent lithium-ion batteries for reuse in the creation of new batteries.

As reported in SciTech Daily,

An estimated 1.3 billion tonnes of food waste and 50 million tonnes of e-waste are generated globally each year.

Spent batteries are conventionally treated with extreme heat (over 500°C) to smelt valuable metals, which emits hazardous toxic gases. Alternative approaches that use strong acid solutions or weaker acid solutions with hydrogen peroxide to extract the metals are being explored, but they still produce secondary pollutants that pose health and safety risks, or rely on hydrogen peroxide which is hazardous and unstable.

Professor Madhavi Srinivasan, co-director of the NTU Singapore-CEA Alliance for Research in Circular Economy (NTU SCARCE) lab, said: “Current industrial recycling processes of e-waste are energy-intensive and emit harmful pollutants and liquid waste, pointing to an urgent need for eco-friendly methods as the amount of e-waste grows. Our team has demonstrated that it is possible to do so with biodegradable substances.”‘

Current industrial processes for recycling batteries involve shredding the batteries and crushing them into a powdery substance. That powdery substance is either smelted at temperatures above 500 degrees Celsius to separate metals or subjected to a chemical leaching technique using a mixture of acids and hydrogen peroxide plus heat. The newly developed process substitutes orange peels instead of the acids and hydrogen peroxide typically used. The researchers oven-dried orange peels, ground them to powder, and mixed them with citric acid, a weak acid found in citrus fruits.

‘Asst Prof Tay explained: “The key lies in the cellulose found in orange peel, which is converted into sugars under heat during the extraction process. These sugars enhance the recovery of metals from battery waste. Naturally-occurring antioxidants found in orange peel, such as flavonoids and phenolic acids, could have contributed to this enhancement as well.”

Importantly, solid residues generated from this process were found to be non-toxic, suggesting that this method is environmentally sound, he added.’

The researchers were further able to use metals recovered via this process to assemble new lithium-ion batteries which displayed a charge-capacity similar to commercially available batteries.  The team is hoping to further optimize the batteries they can produce in this fashion and extend their “waste-to-resource” approach to other cellulose-rich fruit and vegetable waste and other lithium-ion battery types.

Learn more:

“Repurposing of Fruit Peel Waste as a Green Reductant for Recycling of Spent Lithium-Ion Batteries” by Zhuoran Wu, Tanto Soh, Jun Jie Chan, Shize Meng, Daniel Meyer, Madhavi Srinivasan and Chor Yong Tay, 9 July 2020, Environmental Science & Technology.
DOI: 10.1021/acs.est.0c02873

Schematic showing the process of using orange peels to extract metals from lithium-ion batteries
Credit: NTU Singapore

Mail-In Programs Offer Contactless Electronics Recycling to US Businesses, Residents

As societies across the globe continue to deal with the COVID-19 pandemic, many US counties and municipalities, as well as recycling businesses and retail collection points, have either suspended electronics recycling programs or greatly modified procedures to protect the health of their staff and the public.  For example, Best Buy has suspended its popular recycling service, the spring electronics collection in Champaign County (IL) had to be canceled, and although Will County (IL) electronics collections continue to operate, they do so with certain guidelines to minimize interpersonal contact.

In response to our changing realities, some companies are offering new mail-in programs to help residents and businesses responsibly manage their electronics at end-of-life while exercising caution and maintaining social distancing.

TERRA (The Electronics Reuse and Recycling Alliance) offers mail-in residential electronics recycling through its “Done with IT” program. Through this program, consumers can purchase pre-paid mailing labels for a given weight of acceptable items. Unwanted electronics can then be packed in reused boxes (the program does not provide packaging) and shipped via UPS. This service is available throughout much of North America–see their service map for details.  The program works with certified electronics recyclers to ensure data security for participants. The Done with IT program existed pre-pandemic but has continued to expand to new locations during the pandemic.

ERI has recently launched a mail-in recycling box program applicable to both residential and business electronic scrap. Like the Done with IT program, shipments are made via UPS, but unlike the Done with IT program, boxes are shipped flat to the consumer for use, and service is available for all 50 states.  From the press release related to the program:

ERI, the nation’s leading fully integrated IT and electronics asset disposition provider and cybersecurity-focused hardware destruction company currently provides the only NAID, R2, and e-Stewards certified secure-at-home (or office) box program in the United States. The program provides contactless, transparent delivery and pickup. All collected electronics are responsibly recycled and all data is securely destroyed. ERI’s home and business electronics recycling box program is available to individuals and businesses in all 50 states, at every zip code in the country…The boxes are shipped flat directly to the customer with an included return label. Customers can then assemble, fill, and return the boxes whenever convenient, with a simple call to ERI’s logistics partner, UPS.

Of course, other mail-in options for certain types of electronic materials existed before the pandemic and continue. Call2Recycle and Battery Solutions, for example, both offer battery recycling programs. TerraCycle has locations available for its free electronics recycling program.

Consumers should check with their local recycling coordinators to determine whether electronics recycling solutions exist in their area. Mail-in programs such as these may be particularly helpful in areas where local options are limited or temporarily suspended.

Upcoming EPA Webinar on Safe Packaging and Transport of Lithium Batteries

On Thursday, January 23, 2020, the US EPA Sustainable Materials Management (SMM) Web Academy will present Safe Packaging and Transportation of Lithium Batteries for Recycling: What You Need to Know. The speaker will be Jordan Rivera of the US Department of Transportation’s Pipeline and Hazardous Materials Safety Administration (PHMSA).

From the SMM web pages:

Lithium batteries are key to our modern connected world, from our cellphones and computers to our cars (and not just electric cars) and have an increasing role in storing electricity for the electric grid. But, used lithium batteries aren’t exactly like the used alkaline or lead acid batteries that many are used to working with. Because of the battery’s level of charge and the materials that are inside of it, special preparation is needed when shipping these batteries to a refurbisher or recycler. On this webinar participants will learn how to prevent, reduce or eliminate risks of fire or explosions from the improper packaging, marking, labeling, or recycling of lithium batteries.

This SMM webinar will be hosted by the U.S. Environmental Protection Agency and led by a subject matter expert from the Hazardous Materials Safety Assistance Team under the U.S. Department of Transportation’s Pipeline and Hazardous Materials Safety Administration (PHMSA). The webinar will focus on the safe transportation of lithium batteries for recycling and the applicable regulations that must be followed by battery shippers. It is designed for individuals in the battery recycling industry who need a working knowledge of the regulations, or who provide training to their employees on the applicable regulations. They will include an overview on the latest regulatory requirements on proper lithium battery packaging, marking, and labeling and as well as a basic understanding of how to apply the Hazardous Materials Regulations.”

Register for this webinar at https://register.gotowebinar.com/register/13389156744558092. See https://www.epa.gov/smm/sustainable-materials-management-smm-web-academy-webinar-safe-packaging-and-transportation for additional information. Note the SMM Web Academy typically posts slides and a webinar recording after the presentation has occurred.

Battery Innovations and News–Late Summer 2018

As electronics become more ubiquitous each day, the integration of smaller electronic components into ever more products continues, and renewable energy becomes an increasingly popular strategy for addressing climate change, the ability to store and supply power efficiently and safely is all the more important. So it’s no surprise that batteries have been a hot topic in the news for the past month or so. Let’s take a moment to consider some of the highlights of recent battery-related news.

We may as well start with the well-written piece by Geoffrey A. Fowler, the Washington Post’s technology columnist, published today (9/12/18): “The problem with recycling our old tech gadgets: They explode.” This is a good article about how design choices to make electronics thinner and more portable make the recycling of electronics more difficult and dangerous.  Specifically because lithium-ion batteries are being incorporated into more products and smaller products, often without an easy–or any–way to remove those batteries. This isn’t just problematic for for extending the useful life of products. The trend makes the recycling of electronics increasingly risky while simultaneously making the economic feasibility of such efforts diminish. Recyclers need more time, special equipment, and training for proper handling, and they are at greater risk of damages caused by fires. As Fowler explains: “For all their benefits at making our devices slim, powerful and easy to recharge, lithium-ion batteries have some big costs. They contain Cobalt, often mined in inhumane circumstances in places like the Congo. And when crushed, punctured, ripped or dropped, lithium-ion batteries can produce what the industry euphemistically calls a “thermal event.” It happens because these batteries short circuit when the super-thin separator between their positive and negative parts gets breached. Remember Samsung’s exploding Note 7 smartphone? That was a lithium-ion thermal event.”

Fowler visits Cascade Asset Management, an electronics scrap processor in Madison, WI, to observe the process of removing a battery from an old iPad before the device can be sent through the shredder for recycling.  My take away from this article: products need to be designed not only with sleek aesthetics and portability in mind, but also the ability to easily and safely upgrade, repair, and maintain them during their useful life and then to easily and safely reclaim parts and component materials when they have reached their end of useful life. Fowler concludes “So as a gadget reviewer, let me say this clearly to the tech industry: Give up your thin obsession. We’ll happily take electronics with a little extra junk in the trunk if it means we can easily replace batteries to make them last longer – and feel more confident they won’t end up igniting a recycling inferno.” Do agree with his sentiment? Consider voicing that opinion to the manufacturers of your favorite devices, and if you’re an industrial design student, heed well the lessons you can learn from this article.

Close up view of a lithium-ion laptop battery
Photo by Kristoferb, CC BY-SA 3.0

As long as we’re on the subject of “thermal events,” consider this interesting research highlighted in this article provided by the American Chemical Society : “These lithium-ion batteries can’t catch fire because they harden on impact.” ‘Lithium-ion batteries commonly used in consumer electronics are notorious for bursting into flame when damaged or improperly packaged. These incidents occasionally have grave consequences, including burns, house fires and at least one plane crash. Inspired by the weird behavior of some liquids that solidify on impact, researchers have developed a practical and inexpensive way to help prevent these fires. They will present their results today at the 256th National Meeting & Exposition of the American Chemical Society (ACS). “In a lithium-ion battery, a thin piece of plastic separates the two electrodes,” Gabriel Veith, Ph.D., says. “If the battery is damaged and the plastic layer fails, the electrodes can come into contact and cause the battery’s liquid electrolyte to catch fire.” To make these batteries safer, some researchers instead use a nonflammable, solid electrolyte. But these solid-state batteries require significant retooling of the current production process, Veith says. As an alternative, his team mixes an additive into the conventional electrolyte to create an impact-resistant electrolyte. It solidifies when hit, preventing the electrodes from touching if the battery is damaged during a fall or crash. If the electrodes don’t touch each other, the battery doesn’t catch fire. Even better, incorporating the additive would require only minor adjustments to the conventional battery manufacturing process…In the future, Veith plans to enhance the system so the part of the battery that’s damaged in a crash would remain solid, while the rest of the battery would go on working. The team is initially aiming for applications such as drone batteries, but they would eventually like to enter the automotive market. They also plan to make a bigger version of the battery, which would be capable of stopping a bullet. That could benefit soldiers, who often carry 20 pounds of body armor and 20 pounds of batteries when they’re on a mission, Veith says. “The battery would function as their armor, and that would lighten the average soldier by about 20 pounds.”

Imagine the day when lithium-ion batteries might be an asset for safety instead of a liability!

white silica powder shown in a blue tray next to a white sheet of plastic
Adding powdered silica (in blue container) to the polymer layer (white sheet) that separates electrodes inside a test battery (gold bag) will prevent lithium-ion battery fires. Credit: Gabriel Veith

Writing for the HOBI International blog, Alicia Cotton recently wrote that “Innovation is making lithium-ion batteries increasingly harder to recycle.” The point of her post was that as demand for lithium-ion batteries increase, manufacturers will look to produce them with cheaper materials, adversely impacting the economic incentives for recycling these batteries. ‘According to the Royal Chemistry Society, the cost of cobalt, which is heavily used as a cathode material in all batteries, jumped from $32,500 to $81,000 in just over a year. In response, battery manufacturers have opted to redesign batteries to minimize cobalt. In May, Tesla CEO Elon Musk said the company had all but eliminated cobalt from batteries it uses in automobile and stationary batteries. However, doing so will help keep batteries cheap — as in too cheap to recycle. Without valuable contents recyclers have little incentive to capture used batteries, Kaun said.‘  This is an interesting example of trade-offs and how considerations for sustainability are rarely simple. The use of cobalt in batteries is problematic not just due to the economic cost of the material, but also due to human rights issues related to cobalt sourcing. However, this article points out that as higher value materials are phased out of design, there is a negative impact on the economics of recycling. More work is clearly needed to create recycling incentives for lithium-ion batteries moving forward, as well as developing batteries which depend less on cobalt, and improving the sustainability of the cobalt supply chain.

In another recent post for the HOBI International blog, Cotton writes that a “New Material will Triple Storage Capacity of Lithium-Ion Batteries.” Together in a joint effort, scientists from the University of Maryland (UMD), U.S. Army Research Lab and the U.S. Department of Energy’s (DOE) have been working hard to improve the storage capacity of lithium-ion batteries. Turns out, the use of extra cobalt was the answer. The scientists believe they can triple the energy density of lithium-ion battery electrodes.” Well, that would make those batteries not only have higher storage capacity, but also create an incentive for recycling them–but then we’re looking at the issues surrounding cobalt sourcing again. What did I say about trade-offs and how sustainable solutions are rarely simple? Sigh.

And, while we’re on the subject of sustainable solutions coming in shades of grey, here’s an example of how context can be important. As someone who advocates for waste reduction, I often talk about the need for more durable, repairable, upgradable goods and a move away from disposability. I certainly like to encourage people to use rechargeable batteries instead of single-use ones where they can. But there are situations in which disposable goods might actually foster sustainability, and yes, this is even true for batteries.  Another recent update from the American Chemical Society discussed “A paper battery powered by bacteria.” Consider remote areas of the world where access to electricity is a luxury, or situation in which a natural disaster or other emergency has occurred leaving an area without access to power. Think about medical devices that would be needed to help victims of a disaster, or just be part of everyday medical support in remote areas. Paper is desirable for biosensors due to its flexibility, portability, high surface area, and inexpensive nature. “Choi and his colleagues at the State University of New York, Binghamton made a paper battery by printing thin layers of metals and other materials onto a paper surface. Then, they placed freeze-dried “exoelectrogens” on the paper. Exoelectrogens are a special type of bacteria that can transfer electrons outside of their cells. The electrons, which are generated when the bacteria make energy for themselves, pass through the cell membrane. They can then make contact with external electrodes and power the battery. To activate the battery, the researchers added water or saliva. Within a couple of minutes, the liquid revived the bacteria, which produced enough electrons to power a light-emitting diode and a calculator…The paper battery, which can be used once and then thrown away, currently has a shelf-life of about four months. Choi is working on conditions to improve the survival and performance of the freeze-dried bacteria, enabling a longer shelf life. In a related article by Jason Deign for Greentech Media, Choi noted that in these low-power, low-cost situations, the paper battery could be used and then biodegrade without special treatment. Further reporting on this innovation is available in the IEEE Spectrum.

Black paper batteries held in a gloved hand.
Researchers harnessed bacteria to power these paper batteries. Credit: Seokheun Choi.

Now that you’ve read about all these innovations and the need for further innovations, you may be thinking, “Can someone please just tell what a lithium-ion battery is, the basics of how they work, and why we use them if there are so many problematic issues?!?!” Don’t worry–a recent post by Arthur Shi on the iFixit blog provides a nice overview with some links to more in-depth explanations if you’re interested.

Amnesty International Reports on Child Labor in Cobalt Battery Supply Chain

On November 15, 2017, Sustainable Brands reported that Amnesty International had released a new report revealing that tech industry giants such as Microsoft, Lenovo, Renault and Vodafone aren’t doing enough to keep child labor out of cobalt battery supply chains in Democratic Republic of Congo (DRC) and China. “The findings come almost two years after Amnesty exposed a link between batteries used in their products and child labor. Time to Recharge ranks industry leaders, including Apple, Samsung SDI, Dell, Microsoft, BMW, Renault, Vodafone and Tesla according to improvements to their cobalt-sourcing practices since January 2016. The 108-page report revealed that only a handful of companies made progress, with many failing to take even basic steps, such as investigating supply links in the DRC. The report’s publication is timely, arriving just months after the UK government announced plans to ban new petrol and diesel cars and vans from 2040, which would ultimately lead to higher demand for cobalt batteries. This last point is particularly problematic as recent reports have revealed that cobalt resources are on the decline, despite demand growth predicted at 500 percent.”

See http://www.sustainablebrands.com/news_and_views/walking_talk/sustainable_brands/amnesty_international_reveals_tech_industry_giants_fa for the complete article on the Sustainable Brands web site.

To download the report itself, Democratic Republic of the Congo: Time to recharge: Corporate action and inaction to tackle abuses in the cobalt supply chain (15 November 2017, Index number: AFR 62/7395/2017), see https://www.amnesty.org/en/documents/afr62/7395/2017/en/.

Amnesty International logo, with the wordmark on a yellow background beside a stylized image of a lit candle entwined with barbed wire

Illini Gadget Garage Serves as Drop-off for Single-use Batteries, CDs, and DVDs

The Illini Gadget Garage (IGG), a collaborative electronics repair center on the University of Illinois at Urbana-Champaign campus, is providing some unique recycling services for the community. First of all, IGG has become a drop-off collection point for single-use batteries, having already filled one of the “iRecycle” 55 lb. capacity battery collection buckets available from Battery Solutions, a R2/RIOS certified recycler. Another collection bucket is on its way, and the IGG crew look forward to receiving a “Confirmation of Reclamation” letter from Battery Solutions, which will confirm receipt of the materials for recycling and indicate the number of pounds of different types of batteries, by chemistry, were present in the collection bucket. Illini Gadget Garage project coordinator Joy Scrogum purchased the collection buckets using funds donated to the Illinois Sustainable Technology Center’s Sustainable Electronics Initiative (SEI). UI Facilities and Services )F&S) had previously purchased these collection bins for ISTC and other departments on campus, but that arrangement ended when cuts were necessary due to state budget issues. Using SEI donations seemed like a great way to help continue convenient battery recycling for the campus community. (Note that the free Call2Recycle rechargeable battery recycling program is still coordinated by F&S, and the ISTC building at 1 Hazelwood Drive in Champaign is still one of four drop-off locations for rechargeable batteries on campus.)

In addition, the IGG is accepting personally-owned CDs, DVDs and their cases. Locally, the IDEA Store has accepted these for resale and reuse in art and educational projects, but knowing that they are frequently inundated with various types of materials, it was decided to try to find an outlet that would recycle these items (in fact CD and DVD cases are currently on the IDEA Store’s “we don’t need more right now” list). At present, not a lot of material in this stream has been collected, but when a fair amount is available, they will be shipped to the CD Recycling Center of America. It should be noted that CDs and DVDs used to store information for University business should NOT be dropped off at the IGG–those should be provided to departmental IT staff for proper data destruction and recycling via the University’s contracted electronics recycler. The IGG collection is for your personally owned but unwanted music, movies, old copies of outdated software, etc.

Please also note that the IGG does NOT accept electronic devices for recycling. University-owned electronics should be disposed of via the campus surplus system. UI students, staff, faculty, and other community members should consult the Champaign County Electronics Recycling Guide for a list of local businesses that will accept their personally-owned electronics for recycling.

If you’re happy to have these services available through the IGG, consider making a small donation to the SEI Various Donors Fund to support this and other outreach efforts of SEI. The UI Foundation will send you an acknowledgement of your donation for tax purposes.

UI departments or units that produce a large amount of waste single-use batteries, may wish to obtain their own battery recycling bucket through Battery Solutions or another company. Battery recycling can earn an office points in the campus Certified Green Office program.

Questions about the IGG recycling programs or suggestions for other services you would like to see offered via the IGG can be addressed to illinigadgetgarage@gmail.com.

Note that links and mentions of businesses are included for informational purposes only and should not be construed as endorsements by the IGG, associated departments, or the University of Illinois.

thumb1

Amnesty International Shines a Spotlight on Cobalt Supply Chains

amnestylogoIn case you missed it, a new report by Amnesty International has been making headlines as it ties child labor and unsafe working conditions to electronics manufacturing supply chains. See for example, “Children as young as seven mining cobalt used in smartphones, Amnesty says” (Annie Kelly for The Guardian, 1/18/16) and “Your Smartphone May Be Linked to Child Labor” (Jan Lee for Triple Pundit, 1/21/16).

According to the report, over half the world’s cobalt comes from the Democratic Republic of the Congo (DRC), and 20% of that is from artisanal mines where young children may be involved in unsafe practices exposing them to high levels of cobalt. From the Triple Pundit article linked to above, ‘“As with adult miners,” Amnesty International corroborated, “they were exposed to high levels of cobalt on a consistent basis, but did not even have gloves or face masks to wear.” In most cases, the authors pointed out, the financial gain of their work was nominal: “[The children reported] they worked for up to 12 hours a day in the mines, carrying heavy loads, to earn between one and two dollars a day.”’

Cobalt has a number of industrial applications, including widespread use in lithium ion battery cathodes. These batteries are used in hybrid and electric vehicles, as well as in our ubiquitous portable electronic devices, such as cell phones, laptops, tablets, digital cameras, and handheld games. While cobalt is an essential element in small quantities (it’s a component of vitamin B12), high levels of exposure may have adverse effects on the respiratory system, the cardiovascular system, and cause dermal, hematological, and immunological effects (see http://www.atsdr.cdc.gov/toxprofiles/tp33-c2.pdf).

The full report may be downloaded from the Amnesty International web site in English, Chinese, or French (PDF Format; 88 pages). According to the site: “This report documents the hazardous conditions in which artisanal miners, including thousands of children, mine cobalt in the Democratic Republic of the Congo. It goes on to trace how this cobalt is used to power mobile phones, laptop computers, and other portable electronic devices. Using basic hand tools, miners dig out rocks from tunnels deep underground, and accidents are common. Despite the potentially fatal health effects of prolonged exposure to cobalt, adult and child miners work without even the most basic protective equipment. This report is the first comprehensive account of how cobalt enters the supply chain of many of the world’s leading brands.”

You can also check out the Amnesty International video below: