Amnesty International Reports on Child Labor in Cobalt Battery Supply Chain

On November 15, 2017, Sustainable Brands reported that Amnesty International had released a new report revealing that tech industry giants such as Microsoft, Lenovo, Renault and Vodafone aren’t doing enough to keep child labor out of cobalt battery supply chains in Democratic Republic of Congo (DRC) and China. “The findings come almost two years after Amnesty exposed a link between batteries used in their products and child labor. Time to Recharge ranks industry leaders, including Apple, Samsung SDI, Dell, Microsoft, BMW, Renault, Vodafone and Tesla according to improvements to their cobalt-sourcing practices since January 2016. The 108-page report revealed that only a handful of companies made progress, with many failing to take even basic steps, such as investigating supply links in the DRC. The report’s publication is timely, arriving just months after the UK government announced plans to ban new petrol and diesel cars and vans from 2040, which would ultimately lead to higher demand for cobalt batteries. This last point is particularly problematic as recent reports have revealed that cobalt resources are on the decline, despite demand growth predicted at 500 percent.”

See for the complete article on the Sustainable Brands web site.

To download the report itself, Democratic Republic of the Congo: Time to recharge: Corporate action and inaction to tackle abuses in the cobalt supply chain (15 November 2017, Index number: AFR 62/7395/2017), see

Amnesty International logo, with the wordmark on a yellow background beside a stylized image of a lit candle entwined with barbed wire

Green Chemistry and Biomimicry: A More Sustainable Process for Metal Extraction

A team of chemists from McGill University in Montreal, Quebec, Canada, and Western University in London, Ontario, Canada, have developed a way to process metals without toxic solvents and reagents. Their innovation could help reduce negative environmental impacts of metal extraction from raw materials and electronic scrap.

As reported by McGill, “The system, which also consumes far less energy than conventional techniques, could greatly shrink the environmental impact of producing metals from raw materials or from post-consumer electronics…In an article published recently in Science Advances, the researchers outline an approach that uses organic molecules, instead of chlorine and hydrochloric acid, to help purify germanium, a metal used widely in electronic devices. Laboratory experiments by the researchers have shown that the same technique can be used with other metals, including zinc, copper, manganese and cobalt.”

The development is an interesting example of biomimicry. Germanium is a semiconductor not found in substantial quantities in any one type of ore, so a series of processes are used to reduce mined materials with small quantities of the metal to a mixture of germanium and zinc. Isolation of germanium from the zinc in this resulting mixture involves what one of the researchers called “nasty processes.” For an alternative less dependent upon toxic materials and energy use, the researchers found inspiration in melanin, the pigment molecule present in skin, hair, and irises of humans and other animals. Besides contribution to coloration, melanin can bind to metals. The researchers synthesized a molecule that mimics some of melanin’s metal-binding qualities. Using it they were able to isolate germanium from zinc at room temperature, without solvents.

Image of a shiny, silver-grey metallic rock
Image of germanium by W. Oelen, CC BY 3.0

As the McGill article states, “The next step in developing the technology will be to show that it can be deployed economically on industrial scales, for a range of metals.”

Read the full story, published June 7, 2017 by the McGill Newsroom at

See also “A chlorine-free protocol for processing germanium,” Martin Glavinović et al., Science Advances, 5 May 2017. DOI: 10.1126/sciadv.1700149

To learn more about germanium and its applications (including fiber-optics, infrared optics, solar electric applications, and LEDs), see the Wikipedia article on germanium at