Researchers Propose Method to Choose More Sustainable Nanomaterials

From the May 1, 2018 edition of Science Daily:  “Engineered nanomaterials hold great promise for medicine, electronics, water treatment, and other fields. But when the materials are designed without critical information about environmental impacts at the start of the process, their long-term effects could undermine those advances. A team of researchers hopes to change that.

In a study published in Nature Nanotechnology, Yale researchers outline a strategy to give materials designers the tools they need to make the necessary assessments efficiently and at the beginning of the design process. Engineers traditionally focus on the function and cost of their products. Without the information to consider long-term environmental impacts, though, it is difficult to predict adverse effects. That lack of information means that unintended consequences often go unnoticed until long after the product has been commercialized. This can lead to hastily replacing the material with another that proves to have equally bad, or even worse, effects. Having materials property information at the start of the design process could change that pattern. “As a researcher, if I have limited resources for research and development, I don’t want to spend it on something that’s not going to be viable due to its effects on human health,” said Julie Zimmerman, professor of chemical & environmental engineering and co-senior author of the study. “I want to know now, before I develop that product.” To that end, the researchers have developed a database that serves as a screening tool for environmentally sustainable material selection. It’s a chart that lists nanomaterials and assesses each for properties such as size, shape, and such performance characteristics as toxicity and antimicrobial activity. Mark Falinski, a PhD student and lead author of the study, said this information would allow researchers to weigh the different effects of the material before actually developing it.”

The database created by the research team also allows other researchers to enter information to improve the material selection framework. It includes engineered nanomaterials and conventional alternatives with human health and environmental metrics for all materials.

The research team includes scientists affiliated with Yale University, the University of Illinois at Chicago, City University of Hong Kong, and the University of Pittsburgh.

Image of three different illustrations of nanoscale materials: white crystals, pyramidal dark crystals joined together, and a tubular mesh-like formation of molecules
Researchers propose a new method for nanomaterial selection that incorporates environmental and functional performance, as well as cost. Credit: Steve Geringer.

Read the full story in Science Daily at https://www.sciencedaily.com/releases/2018/05/180501161754.htm.

Read the referenced article in Nature Nanotechnology at https://www.nature.com/articles/s41565-018-0120-4.  [Mark M. Falinski, Desiree L. Plata, Shauhrat S. Chopra, Thomas L. Theis, Leanne M. Gilbertson, Julie B. Zimmerman. A framework for sustainable nanomaterial selection and design based on performance, hazard, and economic considerationsNature Nanotechnology, 2018; DOI: 10.1038/s41565-018-0120-4]

To learn more about the potential environmental and health impacts of nanotechnology, see the following:

Researchers Use Ultrasound to Recover Gold from Electronic Scrap

The last few months have been ripe with reports on new research related to material recovery from electronic scrap (commonly referred to as “e-scrap” or “e-waste”), as highlighted in a previous post. I’ve learned of yet another exciting innovation in this field, thanks to a feature written by Jared Paben in the latest edition (4/19/18) of E-Scrap News.

As Paben reports, researchers from Sandia National Laboratories have developed a method to use ultrasonic waves, coupled with surfactants, to cheaply and efficiently recover gold from scrap electronics. Their experiments involved application of two different surfactants to the surface of a cell phone SIM card, which was then submerged in water. Ultrasonic waves were applied, which imploded micro-bubbles on the SIM card’s surface. Upon collapse of these micro-bubbles, micro-jets ejected gold nanoparticles from the card’s surface, and the nanoparticles were captured and stabilized by the surfactants.

According to the research group’s paper, published in the journal Small on 3/24/18), this mechanical method may not only present an effective way of reclaiming gold and other metals from electronic scrap, but could potentially be used to manufacture gold nanoparticles from native gold metal directly upon recovery from mining, which they say “may represent the greenest possible approach to nanoparticle synthesis.” (Citation: J. Watt, M. J. Austin, C. K. Simocko, D. V. Pete, J. Chavez, L. M. Ammerman, D. L. Huber, Small 2018, 1703615. https://doi.org/10.1002/smll.201703615)

You can read more about this research in a 4/3/18 article from New Scientist.

To learn about cavitation and cavitation bubbles, the phenomena which allow this mechanical process to work, see https://www.nsf.gov/news/special_reports/science_nation/cavitationbubbles.jsp and https://en.wikipedia.org/wiki/Cavitation.

For more information on gold in electronics, see How Much Gold is in Smartphones and Computers? and Uses of Gold in Industry, Medicine, Computers, Electronics, Jewelry.

To learn about the properties and applications of gold nanoparticles, see https://www.sigmaaldrich.com/technical-documents/articles/materials-science/nanomaterials/gold-nanoparticles.html.

Amnesty International Reports on Child Labor in Cobalt Battery Supply Chain

On November 15, 2017, Sustainable Brands reported that Amnesty International had released a new report revealing that tech industry giants such as Microsoft, Lenovo, Renault and Vodafone aren’t doing enough to keep child labor out of cobalt battery supply chains in Democratic Republic of Congo (DRC) and China. “The findings come almost two years after Amnesty exposed a link between batteries used in their products and child labor. Time to Recharge ranks industry leaders, including Apple, Samsung SDI, Dell, Microsoft, BMW, Renault, Vodafone and Tesla according to improvements to their cobalt-sourcing practices since January 2016. The 108-page report revealed that only a handful of companies made progress, with many failing to take even basic steps, such as investigating supply links in the DRC. The report’s publication is timely, arriving just months after the UK government announced plans to ban new petrol and diesel cars and vans from 2040, which would ultimately lead to higher demand for cobalt batteries. This last point is particularly problematic as recent reports have revealed that cobalt resources are on the decline, despite demand growth predicted at 500 percent.”

See http://www.sustainablebrands.com/news_and_views/walking_talk/sustainable_brands/amnesty_international_reveals_tech_industry_giants_fa for the complete article on the Sustainable Brands web site.

To download the report itself, Democratic Republic of the Congo: Time to recharge: Corporate action and inaction to tackle abuses in the cobalt supply chain (15 November 2017, Index number: AFR 62/7395/2017), see https://www.amnesty.org/en/documents/afr62/7395/2017/en/.

Amnesty International logo, with the wordmark on a yellow background beside a stylized image of a lit candle entwined with barbed wire

Champaign County Residential Electronics Collection Event Scheduled for Oct. 14, 2017

The next free electronics recycling collection event for participating communities in Champaign County, IL is scheduled for October 14, 2017. The collection will take place from 8 AM to noon at Parkland College (2400 W. Bradley Ave., Champaign). Use the Duncan Road entrance and follow the signs.

There is a 10 item limit for participating residents, and a 2 TV limit. All sizes, types, and models of televisions are accepted. This is of particular significance, because although there are multiple businesses that do accept various types of electronics for recycling year-round, there is currently no place in Champaign County to recycle older, bulkier cathode ray tube (CRT) tvs. (See the Champaign County Electronics Recycling Guide for information on businesses that accept electronics for recycling, including items accepted and contact information).

Participating communities include:  Bondville, Broadlands, Champaign, Gifford, Homer, Ivesdale, Ludlow,
Mahomet, Ogden, Rantoul, Royal, Sadorus, Savoy, St. Joseph, Thomasboro, Urbana, and Unincorporated County. Due to the popularity of these collection events, residents must register at www.ecycle.simplybook.me. Online registration opens on Tuesday, September 5, 2017 at 8 AM.

See http://www.co.champaign.il.us/ReduceReuseRecycle/PDFS/20171014PC.pdf for further information, including items accepted at the collection event. Questions can be addressed to the recycling coordinator in your community:

  • City of Champaign: 217-403-4780
  • City of Urbana: 217-384-2302
  • Champaign County: 217-819-4035

image of post card announcing residential electronics collection event on october 14, 2017

 

 

Death by Design Screening, August 22 at Champaign Public Library

On Tuesday, August 22, the Illini Gadget Garage will be hosting a screening of the documentary Death by Design at the Champaign Public Library. Doors will open at 6:30 PM and the film will begin at 7:00. The film duration is 73 minutes.

The Illini Gadget Garage is a repair center that helps consumers with “do-it-together” troubleshooting and repair of minor damage and performance issues of electronics and small appliances. The project promotes repair as a means to keep products in service and out of the waste stream. The Illini Gadget Garage is coordinated by the Illinois Sustainable Technology Center.

Death by Design explores the environmental and human costs of electronics, particularly considering their impacts in the design and manufacture stages, bearing in mind that many electronic devices are not built to be durable products that we use for many years. Cell phones, for example, are items that consumers change frequently, sometimes using for less than 2 years before replacing with a new model. When we analyze the effort put into, and potential negative impacts of, obtaining materials for devices through efforts like mining, the exposure to potentially harmful substances endured by laborers in manufacturing plants, and the environmental degradation and human health risks associated with informal electronics recycling practices in various parts of the word, the idea that we might see these pieces of technology as “disposable” in any way becomes particularly poignant. For more information on the film, including reviews, see http://deathbydesignfilm.com/about/  and
http://bullfrogfilms.com/catalog/dbd.html. You can also check out the trailer at the end of this post.

After the film, there will be a brief discussion and Q&A session facilitated by Joy Scrogum, Sustainability Specialist from the Illinois Sustainable Technology Center (ISTC) and project coordinator for the Illini Gadget Garage. UI Industrial Design Professor William Bullock will also participate in the panel discussion; other panelists will be announced as they are confirmed. Professor Bullock is also an adviser for the Illini Gadget Garage project; see more about IGG advisers at http://wp.istc.illinois.edu/ilgadgetgarage/meet-the-advisers/.  Check the IGG web site calendar and Facebook page for room details and panelist announcements.

Admission to this public screening is FREE, but donations are suggested and appreciated to support future outreach and educational efforts of the Illini Gadget Garage. See http://wp.istc.illinois.edu/ilgadgetgarage/donate/donation-form/ to make an online donation and http://wp.istc.illinois.edu/ilgadgetgarage/ for more information on the project.

Bullfrog Films presents…DEATH BY DESIGN from Bullfrog Films on Vimeo.

Green Chemistry and Biomimicry: A More Sustainable Process for Metal Extraction

A team of chemists from McGill University in Montreal, Quebec, Canada, and Western University in London, Ontario, Canada, have developed a way to process metals without toxic solvents and reagents. Their innovation could help reduce negative environmental impacts of metal extraction from raw materials and electronic scrap.

As reported by McGill, “The system, which also consumes far less energy than conventional techniques, could greatly shrink the environmental impact of producing metals from raw materials or from post-consumer electronics…In an article published recently in Science Advances, the researchers outline an approach that uses organic molecules, instead of chlorine and hydrochloric acid, to help purify germanium, a metal used widely in electronic devices. Laboratory experiments by the researchers have shown that the same technique can be used with other metals, including zinc, copper, manganese and cobalt.”

The development is an interesting example of biomimicry. Germanium is a semiconductor not found in substantial quantities in any one type of ore, so a series of processes are used to reduce mined materials with small quantities of the metal to a mixture of germanium and zinc. Isolation of germanium from the zinc in this resulting mixture involves what one of the researchers called “nasty processes.” For an alternative less dependent upon toxic materials and energy use, the researchers found inspiration in melanin, the pigment molecule present in skin, hair, and irises of humans and other animals. Besides contribution to coloration, melanin can bind to metals. The researchers synthesized a molecule that mimics some of melanin’s metal-binding qualities. Using it they were able to isolate germanium from zinc at room temperature, without solvents.

Image of a shiny, silver-grey metallic rock
Image of germanium by W. Oelen, CC BY 3.0

As the McGill article states, “The next step in developing the technology will be to show that it can be deployed economically on industrial scales, for a range of metals.”

Read the full story, published June 7, 2017 by the McGill Newsroom at https://www.mcgill.ca/newsroom/channels/news/more-sustainable-way-refine-metals-268517.

See also “A chlorine-free protocol for processing germanium,” Martin Glavinović et al., Science Advances, 5 May 2017. DOI: 10.1126/sciadv.1700149 http://advances.sciencemag.org/content/3/5/e1700149

To learn more about germanium and its applications (including fiber-optics, infrared optics, solar electric applications, and LEDs), see the Wikipedia article on germanium at https://en.wikipedia.org/wiki/Germanium.

Illini Gadget Garage Announces Hours for Summer 2017 and Off-Campus Services

The Illini Gadget Garage (IGG) is a collaborative repair center on the UIUC campus to assist students, staff and faculty with troubleshooting and repair of minor damage and performance issues for their personally owned electronic devices and small appliances. The project is coordinated by the Illinois Sustainable Technology Center (ISTC) Technical Assistance Program as a waste reduction outreach project of the Sustainable Electronics Initiative (SEI).

Summer hours
The IGG has announced hours for Summer 2017. “Pop-up” repair clinics will be held at the Undergraduate Library Media Commons on Mondays and Wednesdays from 11:30 AM to 2:30 PM. Open hours will be held at the IGG’s physical workshop (INHS Storage Building #3) on South Oak Street on Tuesdays and Thursdays from 10 AM to 2 PM and on Fridays from noon to 4 PM. A map is available for directions to the physical location: http://tinyurl.com/guv4n9z. Note that hours are subject to change, as staff are working to schedule more pop-up clinics in order to bring services to a wider audience, so check the project web site or Facebook page for announcements.

Image which lists the summer 2017 hours for the Illini Gadget Garage

Bring a pop-up repair clinic to your facility
Related to that spirit of expansion, the IGG is now offering off-campus pop-ups for companies and organizations that would like to bring “do-it-together” repair to their site as way to engage employees and patrons in product stewardship and sustainability. Staff will come to your location with the necessary tools, and they can arrange to have your audience fill out a diagnostic form in advance so they can research information on the devices and issues being faced ahead of time, making one-on-one interactions during the event more productive. Off-campus pop-ups are 2-4 hours long to allow sufficient time for troubleshooting, repairs, and any additional research. Note that IGG does not sell parts, but if it is determined that a part is needed, staff can assist individuals in determining the exact models of required parts and in researching ways to obtain the part. Staff can also help individuals identify local repair businesses that could help them address more complex damage or businesses that can accept items for proper recycling if they are beyond repair. IGG can help identify local businesses and/or online vendors for informational purposes only; the IGG does not endorse any external business and the ultimate decision of how/where to obtain parts or services is that of the consumer.

A pop-up repair clinic can provide a unique benefit to your staff, and be part of your organization’s sustainability efforts, by creating conversations around the impacts of product manufacture, design, and end-of-life management. Such events also provide empowerment and team building opportunities. If you have questions or are interested in scheduling a clinic at your facility, please contact Joy Scrogum, ISTC Sustainability Specialist, for more information and pricing. Fees are charged to host organization of a pop-up clinic to support staff members time both at the event and for preparation; however individuals that attend your event (e.g. employees and/or patrons) are not themselves charged for the assistance they receive. Off-campus pop-up clinics are not restricted to the Champaign-Urbana metropolitan area, but please be aware that additional fees may apply for travel.

View from above showing a student seated at a table working with tools to dismantle and repair a laptop

Support IGG outreach in your community or on the UIUC campus
Companies and corporations interested in sponsoring a pop-up repair clinic in their community or at a particular public space are encouraged to contact Joy Scrogum to discuss possibilities and to receive instructions for contributions to the appropriate UI Foundation fund. Additionally, any individual or company interested in supporting IGG’s efforts to provide product stewardship and waste reduction guidance to the UIUC community at no cost to students, faculty and staff may make online donations via the UI Foundation to the “SEI Various Donors Fund,” which supports the educational efforts of the Sustainable Electronics Initiative. You may indicate “Support the Illini Gadget Garage” in the “Special Instructions” section of the online donation form. We thank you and the project’s current sponsors for your support!

ISTC Earns Gold Level Recognition from State Electronics Challenge for Third Year in a Row

The Illinois Sustainable Technology Center (ISTC), the parent organization of the Sustainable Electronics Initiative (SEI), has once again been recognized by the State Electronics Challenge (SEC) program for its accomplishments in green purchasing, energy conservation, and responsible recycling of electronic office equipment.

As a result of its environmental initiatives, in 2016 ISTC saved enough energy to power 42 households per year, avoided greenhouse gas emissions equivalent to removing 68 cars from the road per year, as well as avoiding the generation of 37 pounds of hazardous waste.

For more information, see the press release on the ISTC Blog at http://wp.istc.illinois.edu/blog/2017/04/04/state-electronics-challenge-recognizes-illinois-sustainable-technology-center-as-a-2016-gold-award-winner/.

photo of SEC plaque made of old circuit boards

2017 iNEMI Roadmap Rollout Webinars

The International Electronics Manufacturing Initiative (iNEMI) regularly produces industry roadmaps. According to the iNEMI web site, “Each edition is a global collaborative effort that involves many individuals who are leading experts in their respective fields and represent many perspectives on the electronics manufacturing supply chain.  Our roadmap has become recognized as an important tool for defining the “state of the art” in the electronics industry as well as identifying emerging and disruptive technologies. It also includes keys to developing future iNEMI projects and setting industry R&D priorities over the next 10 years.”

The latest edition of the iNEMI roadmap will go on sale this month. In preparation, iNEMI is previewing highlights from select chapters in the following two webinars:

  • Asia (April 6): Internet of Things (IoT) and Packaging & Components Substrates chapters
  • North America/Europe (April 7): IoT and Sustainable Electronics chapters

For details including session overviews, times, and online registration, see the iNEMI web page for these rollout webinars.

The purpose of these webinars is to introduce the 2017 iNEMI Roadmap and identify key issues and needs, collect feedback during the Q & A session for ongoing gap analysis purposes, recruit participation in in the development of the iNEMI Technical Plan, and recruit participation in the next roadmap development cycle. (See http://community.inemi.org/content.asp?contentid=56 for information on the 2015 Technical Plan.)

iNEMI logo