New Recycling Process Turns E-waste into Metal Coating

In a paper published this summer in ACS Omega, Rumana Hossain and Veena Sahajwalla describe an innovative process for transforming electronic waste, or e-waste, into a protective coating for metal.

As reported in Science Daily,

‘A typical recycling process converts large quantities of items made of a single material into more of the same. However, this approach isn’t feasible for old electronic devices, or “e-waste,” because they contain small amounts of many different materials that cannot be readily separated. Now, in ACS Omega, researchers report a selective, small-scale microrecycling strategy, which they use to convert old printed circuit boards and monitor components into a new type of strong metal coating…

Based on the properties of copper and silica compounds, Veena Sahajwalla and Rumana Hossain suspected that, after extracting them from e-waste, they could combine them to create a durable new hybrid material ideal for protecting metal surfaces.

To do so, the researchers first heated glass and plastic powder from old computer monitors to 2,732 F, generating silicon carbide nanowires. They then combined the nanowires with ground-up circuit boards, put the mix on a steel substrate then heated it up again. This time the thermal transformation temperature selected was 1,832 F, melting the copper to form a silicon-carbide enriched hybrid layer atop the steel. Microscope images revealed that, when struck with a nanoscale indenter, the hybrid layer remained firmly affixed to the steel, without cracking or chipping. It also increased the steel’s hardness by 125%. The team refers to this targeted, selective microrecycling process as “material microsurgery,” and say that it has the potential to transform e-waste into advanced new surface coatings without the use of expensive raw materials.’

Learn more:

Rumana Hossain, Veena Sahajwalla. Material Microsurgery: Selective Synthesis of Materials via High-Temperature Chemistry for Microrecycling of Electronic Waste. ACS Omega, 2020; 5 (28): 17062 DOI: 10.1021/acsomega.0c00485